Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Wang, Huan (Ed.)Defect identification has been a significant task in various fields to prevent the potential problems caused by imperfection. There is great attention for developing technology to accurately extract defect information from the image using a computing system without human error. However, image analysis using conventional computing technology based on Von Neumann structure is facing bottlenecks to efficiently process the huge volume of input data at low power and high speed. Herein efficient defect identification is demonstrated via a morphological image process with minimal power consumption using an oxide transistor and a memristor‐based crossbar array that can be applied to neuromorphic computing. Using a hardware and software codesigned neuromorphic system combined with a dynamic Gaussian blur kernel operation, an enhanced defect detection performance is successfully demonstrated with about 104 times more power‐efficient computation compared to the conventional complementary metal‐oxide semiconductor (CMOS)‐based digital implementation. It is believed the back end of line (BEOL)‐compatible all‐oxide‐based memristive crossbar array provides the unique potential toward universal artificial intelligence of things (AIoT) applications where conventional hardware can hardly be used.more » « less
-
Abstract Artificial neural networks (ANNs) are widely used in numerous artificial intelligence‐based applications. However, the significant amount of data transferred between computing units and storage has limited the widespread deployment of ANN for the artificial intelligence of things (AIoT) and power‐constrained device applications. Therefore, among various ANN algorithms, quantized neural networks (QNNs) have garnered considerable attention because they require fewer computational resources with minimal energy consumption. Herein, an oxide‐based ternary charge‐trap transistor (CTT) that provides three discrete states and non‐volatile memory characteristics are introduced, which are desirable for QNN computing. By employing a differential pair of ternary CTTs, an artificial synaptic segregation with multilevel quantized values for QNNs is demostrated. The approach establishes a platform that combines the advantages of multiple states and robustness to noise for in‐memory computing to achieve reliable QNN performance in hardware, thereby facilitating the development of energy‐efficient AIoT.more » « less
-
3D sensing is a primitive function that allows imaging with depth information generally achieved via the time‐of‐flight (ToF) principle. However, time‐to‐digital converters (TDCs) in conventional ToF sensors are usually bulky, complex, and exhibit large delay and power loss. To overcome these issues, a resistive time‐of‐flight (R‐ToF) sensor that can measure the depth information in an analog domain by mimicking the biological process of spike‐timing‐dependent plasticity (STDP) is proposed herein. The R‐ToF sensors based on integrated avalanche photodiodes (APDs) with memristive intelligent matters achieve a scan depth of up to 55 cm (≈89% accuracy and 2.93 cm standard deviation) and low power consumption (0.5 nJ/step) without TDCs. The in‐depth computing is realized via R‐ToF 3D imaging and memristive classification. This R‐ToF system opens a new pathway for miniaturized and energy‐efficient neuromorphic vision engineering that can be harnessed in light‐detection and ranging (LiDAR), automotive vehicles, biomedical in vivo imaging, and augmented/virtual reality.more » « less
An official website of the United States government
